Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.more » « less
-
Abstract. The evolution of organic aerosol (OA) and aerosol sizedistributions within smoke plumes is uncertain due to the variability inrates of coagulation and OA condensation/evaporation between different smokeplumes and at different locations within a single plume. We use aircraftdata from the FIREX-AQ campaign to evaluate differences in evolving aerosolsize distributions, OA, and oxygen to carbon ratios (O:C) between and withinsmoke plumes during the first several hours of aging as a function of smokeconcentration. The observations show that the median particle diameterincreases faster in smoke of a higher initial OA concentration (>1000 µg m−3), with diameter growth of over 100 nm in 8 h – despite generally having a net decrease in OA enhancementratios – than smoke of a lower initial OA concentration (<100 µg m−3), which had net increases in OA. Observations of OA and O:Csuggest that evaporation and/or secondary OA formation was greater in lessconcentrated smoke prior to the first measurement (5–57 min afteremission). We simulate the size changes due to coagulation and dilution andadjust for OA condensation/evaporation based on the observed changes in OA.We found that coagulation explains the majority of the diameter growth, withOA evaporation/condensation having a relatively minor impact. We found thatmixing between the core and edges of the plume generally occurred ontimescales of hours, slow enough to maintain differences in aging betweencore and edge but too fast to ignore the role of mixing for most of our cases.more » « less
-
null (Ed.)Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO 2 ) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime ( τ HPMTF < 2 h) and terminates DMS oxidation to SO 2 . When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO 2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO 2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.more » « less
An official website of the United States government
